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Abstract Recent neurobiological models propose that executive control deficits
play a critical role in the development and maintenance of drug addiction. In this
review, we discuss recent advances in our understanding of executive control
processes and their constituent neural network, and examine neuropsychological
and neuroimaging evidence of executive control dysfunction in addicted drug users.
We explore the link between attentional biases to drug-related stimuli and treatment
outcome, and discuss recent work demonstrating that the hedonic balance between
drug cues and natural reinforcers is abnormal in addiction. Finally, we consider the
potential impact of early drug use on the developing adolescent brain, and dis-
cuss research examining premorbid executive control impairments in drug-naı̈ve
“at-risk” populations.
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Abbreviations

WM Working memory
WCST Wisconsin card sorting test
PET Positron emission tomography
EEG Electroencephalography
fMRI Functional Magnetic Resonance Imaging
ERP Event related potential
ACC Anterior cingualte cortex
PTSD Post-traumatic stress disorder
rACC Rostral anterior cingulate cortex
SUD Substance use disorder

1 Introduction

Contemporary models of human drug addiction emphasize neuropsychological
and neurobiological dysfunction of complex processes within the brain (Everitt
and Robbins 2005; Koob 2006; Robinson and Berridge 2008). In these models,
cognitive factors, such as a diminished capacity to control one’s own behavior, in
conjunction with a strong motivation to consume a drug, is considered critical.
Decades of research has demonstrated the powerful reinforcing properties of
addictive drugs via their influence on the neurotransmitter dopamine within the
mesocorticolimbic system of the brain (Volkow et al. 1999). However, this attri-
bute alone does not explain the maintenance of drug taking behavior, particularly
if it is likely to result in serious adverse consequences. Recent work has argued
that executive control deficits also play a critical role in the development and
maintenance of drug addiction (Jentsch and Taylor 1999; Goldstein and Volkow
2002; Lubman et al. 2004; Garavan and Stout 2005; Yucel et al. 2007a). Current
research indicates that executive control processes are fundamental for success-
fully inhibiting the immediate pursuit of pleasurable stimuli, and for the develop-
ment of adaptive patterns of behavior – both key factors in drug addiction
(Kalivas and Volkow 2005). The aim of this review is to outline the evidence
for compromised executive control processes, and the neural mechanisms that
underlie them, thereby contributing to prolonged drug consumption. This review
will examine evidence of executive control dysfunction in dependent drug users,
drug-naı̈ve “at-risk” populations and its predictive value for identifying those
individuals who transition from use to dependence. In this review, the term “drug”
will be used throughout to encompass all psychoactive substances (including
alcohol) that are abused.
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2 Executive Control Processes and Their Constituent Neural
Network

All goal-directed behavior, however trivial, might be said to require executive
involvement: Cowan’s operational definition of executive functions includes all
processes that can be influenced by instructions or incentives (Cowan 2001). In
general, executive functions serve the same explanatory roles as control processes
(Atkinson and Shiffrin 1968; Schneider and Shiffrin 1977; Shiffrin and Schneider
1977); that is, those nonroutinized, attentionally-demanding, consciously-available,
volitional processes that initiate a certain action or interrupt and adjust ongoing
actions. Measuring individual differences in these processes has typically involved
cognitive tasks that increase demands for specific aspects of control, such as
inhibition, selective attention, or task switching. Examples of tests used to examine
executive processes include dual-task performance, Stroop, Wisconsin Card Sort-
ing, Tower of London, delayed alternation, and assorted working memory (WM)
tasks. Such paradigms have proved a reliable method for demonstrating executive
control deficits across a range of clinical conditions (Dalrymple-Alford et al. 1994;
Diamond 1996; Baddeley et al. 1997; Barkley 1997; Diamond et al. 1997; Konrad
et al. 2000; Baddeley et al. 2001; Bennetto et al. 2001; Gilotty et al. 2002; Sharma
and Antonova 2003; Simon et al. 2003), with recent work also indicating a strong
relationship between executive control deficits on laboratory tasks and real-world
behavioral problems (Burgess et al. 1998; Kibby et al. 1998; Moriyama et al. 2002;
Kalechstein et al. 2003a; Odhuba et al. 2005; Chaytor et al. 2006).

3 Neuroanatomy of Executive Control Processes

In attempting to identify their anatomical loci, cognitive neuroimaging experiments
have operationalized executive functions in various ways, including dual-task coor-
dination (D’Esposito et al. 1995), task switching (Dove et al. 2000; Sohn et al. 2000),
memory updating (Salmon et al. 1996), and response sequencing, monitoring and
manipulation (Owen et al. 1996). A consensus implicating the dorsolateral prefrontal
cortex as critical for executive functioning has emerged, as this region has been
observed in a number of studies using a range of different tasks (Owen et al. 1996;
Smith and Jonides 1999; Owen et al. 2000; Petrides 2000; Postle et al. 2000; Bor et al.
2001; Szameitat et al. 2002; Sylvester et al. 2003). This consensus is also consistent
with the human lesion literature, which implicates the frontal lobes in organizing,
regulating, and producing coherent behavior (Luria 1973; Stuss and Benson 1987).
Patients with frontal lobe lesions appear to lose important aspects of autonomous
executive control, as evidenced by the loss of behavioral control to environmental
contingencies. Classic examples of such behavior include capture errors (automati-
cally following cues with prepotent responses) and utilization behaviors (reaching out
and using objects in the environment in an automatic manner) (Lhermitte 1986).
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However, it is clear that executive functions are not located solely in prefrontal
regions (Andres 2003). Those neuroimaging studies that have localized executive
functions to the dorsolateral prefrontal cortex have also observed extensive parietal,
premotor, cingulate, occipital, and cerebellar activation. Consistent with these
findings, functional imaging studies of “classic” executive tasks such as the Tower
of London, the Wisconsin Card Sorting Task, and Stroop Test reveal extensive
activation in the frontal lobes, as well as in temporal, parietal, occipital, and
cerebellar regions (Berman et al. 1995; Prabhakaran et al. 1997; Monchi et al.
2001; Newman et al. 2003). Other investigators have argued for distinct or inter-
acting prefrontal and anterior cingulate contributions to executive processes (Gehring
and Knight 2000; MacDonald et al. 2000), or have suggested that regions underly-
ing executive functions may contribute to many other cognitive processes, such that
executive functions are accomplished by distributed networks of activated areas
(Carpenter et al. 2000; Miller and Cohen 2001). Despite the challenge that this may
present for localizing executive functions, one should still be able to identify the
underlying neuroanatomical circuitry, although a more sophisticated level of des-
cription may be required; the hallmark of executive functions may not be a par-
ticular gyrus or gyri, but may be reflected in dynamic patterns of activation within
an entire task-related circuit.

4 Executive Control Dysfunction in Addicted Drug Users

Significant impairments on clinical neuropsychological (e.g., Stroop test, WCST)
and experimental measures of executive control (e.g., Go/No-go task, Eriksen
Flanker task, Simon Task) have been identified in a range of dependent drug-
using groups (Hoff et al. 1996; Bolla et al. 1999, 2000; Simon et al. 2000; Rosselli
et al. 2001; Fillmore and Rush 2002; Salo et al. 2002; Simon et al. 2002; Solowij
et al. 2002; Kalechstein et al. 2003b; Goldstein et al. 2004; Lundqvist 2005; Li et al.
2006; Verdejo-Garcia et al. 2006; McHale and Hunt 2008). Neuroimaging studies
have identified an association between these executive control deficits and dysfunc-
tion in prefrontal (particularly dorsolateral and inferior frontal), anterior cingulate,
and orbitofrontal regions (Bolla et al. 2001, 2003, 2004; Goldstein et al. 2001;
Franklin et al. 2002; Paulus et al. 2002; Kaufman et al. 2003; Hester and Garavan
2004; Gruber and Yurgelun-Todd 2005; London et al. 2005; Tapert et al. 2007;
Paulus et al. 2008). Individual studies have also identified changes within subcor-
tical (thalamus and basal ganglia), parietal, temporal, and cerebellar regions,
although these findings are less consistent. The variability in brain regions impli-
cated across studies is partly related to differences in the task demands of the
cognitive paradigms administered. Similarly, the characteristics of the sample
(e.g., demography, education, premorbid intelligence, comorbid psychiatric his-
tory), the duration and frequency of drug use, neuroimaging technique [e.g.,
positron emission tomography (PET), electroencephologram (EEG), functional
magnetic resonance imaging (fMRI)], and type of drug used all appear to subtly
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influence the pattern of behavioral and neural executive control deficits observed
(see also Yucel et al. 2007a).

It is important to point out that many studies that observe differences in func-
tional brain activity between drug-using groups and matched control participants do
not observe a significant difference in executive control performance (Goldstein
et al. 2001; Tapert et al. 2007). Indeed, some studies manipulate task difficulty to
ensure equivalent performance between drug users and controls so as to ensure that
the differences in brain function observed are not overly influenced by performance
differences, or by factors that potentially contribute to performance differences
(e.g., fatigue, frustration, effort)(Kaufman et al. 2003; Yucel et al. 2007b). The
interpretation of findings from such studies has generally focused on identifying
brain regions or brain networks that behave differently in drug users. For example,
studies have found that equivalent executive control performance in drug users is
typically associated with higher levels of activity within brain regions related to the
task (e.g., prefrontal regions; Gruber and Yurgelun-Todd 2005; Tapert et al. 2007),
or the recruitment of additional analogous brain regions (Desmond et al. 2003;
Yucel et al. 2007b) that suggest compensatory patterns of activity.

The identification of executive control deficits in addicted drug users has typi-
cally involved a comparison between an actively using addicted group, or those
who have recently become abstinent, and a nondrug-using control group. Little
research has examined the trajectory of executive control deficits during sustained
abstinence, or longitudinally examined the impact of relapse or continued use on
performance. Simon et al. (2004) found that methamphetamine users who had
relapsed by 3-month follow-up had significantly poorer executive control perfor-
mance than demographically comparable participants who had remained abstinent.
However, the “relapse” group (and for some tests the abstinent group) also had
significantly poorer executive control performance than a group of comparable
users who had not attempted abstinence and continued to use methamphetamine.
The results of this study highlight the critical need for longitudinal research exam-
ining how cognitive performance, and in particular executive control, is influenced
by continued drug use, abstinence, and relapse.

5 Attentional Bias for Drug-Related Stimuli

One suggested mechanism by which executive control dysfunction influences
further drug consumption is via specific attentional biases to drug-related stimuli
(e.g., drug paraphernalia). Human drug addiction is a complex multifactorial
phenomenon that features, with remarkable consistency, a difficulty in directing
attention away from salient drug-related stimuli. Behavioral studies have shown
that processing a nonsalient stimulus in the presence of a salient drug-related
stimulus presents a significant difficulty for those dependent on cocaine (Copersino
et al. 2004; Hester et al. 2006), alcohol (Sharma et al. 2001; Ryan 2002; Cox et al.
2003; Duka and Townshend 2004a, b), cannabis (Field et al. 2004a), nicotine
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(Wertz and Sayette 2001; Powell et al. 2002; Waters et al. 2003; Bradley et al.
2004; Field et al. 2004b), or heroin (Lubman et al. 2000; Franken et al. 2003).
Similarly, electrophysiological studies, which are able to directly quantify the
allocation of processing resources to specific stimuli independently of conscious
awareness, demonstrate enhanced event-related potential (ERP) responses to drug-
related stimuli compared to nonsalient stimuli across a range of addicted popula-
tions (Warren and McDonough 1999; Herrmann et al. 2000, 2001; Franken et al.
2003; van de Laar et al. 2004; Lubman et al. 2007b, 2008. Together, these studies
provide evidence that drug-related stimuli capture processing resources and influ-
ence behavior.

The basis of this attentional bias in addicted users may relate to the reinforcing
properties of drugs and their influence on the mesocorticolimbic “reward” network,
and consequently, the influence of the limbic system on attention and executive
control. The mesocorticolimbic neural circuit, which includes the nucleus accum-
bens, amygdala and hippocampus, has been associated with the acute reinforcing
properties of addictive drugs (Everitt et al. 1999). Repeated administration of a drug
alters the responsiveness of these brain regions, insofar as they become sensitized to
the association between the drug, its many related stimuli (e.g., context and
surroundings in which it is taken), and the euphoria that accompanies intoxication.
Indeed, studies of drug craving where drug-related stimuli are presented to
either active or abstinent users have demonstrated significant activation in regions
such as the amygdala, nucleus accumbens, and hippocampus (Grant et al. 1996;
Maas et al. 1998; Childress et al. 1999; Garavan et al. 2000; Ciccocioppo et al.
2001; Kilts et al. 2001; Bonson et al. 2002; Brody et al. 2002; Tapert et al. 2003;
Franken et al. 2004a). This type of conditioned associative learning is typically
found with other reinforcing stimuli (e.g., food, pain), and items conditioned in this
way are reinforced as salient to the individual (Berridge and Robinson 1998).

The salience of a stimulus determines its capacity to hold attention, and to an
extent, to direct attention. Learning the salience of stimuli and, in turn, allowing
salience to reflexively direct our attention (particularly visual attention) appears to
have a logical and evolutionary advantage. Thus, when navigating a complex
multistimulus environment, our attention is captured by those items which we
find rewarding (e.g., food) or that could harm us (e.g., predators). As salience
directs attention relatively automatically (Pessoa and Ungerleider 2004), a greater
level of executive control must be imposed to ignore a salient cue in order to focus
on a less salient stimulus. Exerting cognitive control is associated with activation in
the anterior cingulate cortex (ACC), dorsolateral prefrontal cortex, and inferior
parietal regions, during selective attention paradigms such as the Stroop Test
(Kerns 2006).

The strong attentional bias that chronic users typically demonstrate for drug-
related stimuli highlights its potential role in maintaining addictive behavior. If a
user’s attentional system is sensitive to directing attention toward drug-related
stimuli in their environment, re-encountering these stimuli will cue attention, and
consequently craving. Indeed, several studies have reported a correlation between
craving and drug cue-elicited ERP responses (Franken et al. 2003, 2004b; Namkoong
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et al. 2004; Lubman et al. 2008). While the relationship between craving and
relapse during abstinence is complex, users typically report that cravings occur
prior to and during the period of highly ritualized and automatic drug-taking
behavior that follows an impulsive urge to use (Miller and Gold 1994). Recent
studies have demonstrated that the extent of an individual users’ attentional bias for
drug-related stimuli can robustly predict the likelihood of successfully ceasing
cigarette smoking (Waters et al. 2003), or remaining abstinent during treatment
for alcohol (Cox et al. 2002), cocaine (Carpenter et al. 2005), and heroin (Marissen
et al. 2006) dependence. The study by Cox et al. (2002) measured attentional bias
for alcohol-related stimuli over two time-points and demonstrated that levels of bias
increased prior to relapse.

Recently, Lubman et al. (2009) utilized a multimethod approach to examine
hedonic responses to natural reinforcers and drug cues among heroin users on
opiate substitution treatment. Across a range of response measures (i.e., self report,
expressive, reflex modulation, and cortical/attentional), they consistently found
altered processing of drug and pleasant pictures in opiate-dependent individuals
relative to controls. The opiate-dependent group demonstrated enhanced attentional
processing of drug-related stimuli as well as reduced responsiveness to natural
reinforcers, and subjective valence ratings of pleasant pictures consistently pre-
dicted regular (at least weekly) heroin use at 6-month follow-up, even after con-
trolling for baseline craving scores and heroin use. While few other addiction
studies have included a nondrug-related emotionally salient class of stimuli (e.g.,
sexual imagery, highly aversive images) in their study design, these results support
the notion that the hedonic balance between drug cues and natural reinforcers is
abnormal in heroin users, with drug-related stimuli capturing relatively more
attentional and hedonic resources than natural rewards.

Research with other clinical (e.g., Major Depression, PTSD) populations suggest
that the neural mechanisms underlying attentional biases for emotionally-salient
information may be related to a reciprocal suppression effect (Bush et al. 2000). In
these studies, the processing of nonsalient incongruent Stroop stimuli resulted in a
pattern of increased dorsal ACC and dorsolateral prefrontal cortex activity, while
the processing of evocative or emotionally salient words activated limbic areas such
as the rostral anterior cingulate cortex (rACC), insula, and amygdala (Mayberg
et al. 1999). Interestingly, during the latter condition, dorsal ACC and dorsolateral
prefrontal cortex regions demonstrated decreased activation (when compared to the
incongruent Stroop condition), further supporting the notion of a reciprocal sup-
pression effect, whereby emotional words appear emotionally salient and are
associated with decreased activity of executive control regions.

In general, research examining the neural bases of attentional biases in drug users
has been limited. Goldstein et al. (2007) administered an emotional stroop task that
presented drug-related words to participants and required them to ignore the evoca-
tive content of the stimuli while performing a cognitive operation (responding to the
word’s ink color). The design of their task prevented the detection of an attentional
bias; however, brain activation in response to drug-related words (relative to neutral
words) by their sample of dependent cocaine users indicated significant activity in
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ACC and mesial orbitofrontal regions, with individual differences in performance
correlating with activity in these regions.

Recent work has also demonstrated that cognitive measures of executive control
dysfunction, in the absence of evocative drug-related stimuli, are also capable of
predicting treatment outcomes. Bowden-Jones et al. (2005) demonstrated that
decision-making deficits (e.g., the inability to inhibit the selection of immediately
rewarding stimuli associated with poorer outcomes over the longer term) predicted
those alcohol-dependent patients would relapse, after completing a 21-day inpatient
program, in the following 3 months. Passetti et al. (2008) have recently demonstrated
a similar relationship using performance on the CambridgeGamble Task and the Iowa
Gambling Task to predict relapse rates in dependent opiate users. This study high-
lighted that impulsiveness for reward, rather than impulsiveness per se (measured by
tasks such as the Go/No-go), predicted relapse rates. Streeter et al. (2008) also found
that baseline Stroop task performance predicted those patients who failed to complete
an outpatient treatment trial for cocaine dependence. These results, while consistent
with previous studies demonstrating a relationship between cognitive task perfor-
mance and treatment completion (Aharonovich et al. 2003, 2006), utilized measures
of treatment compliance rather than relapse to drug taking. However, the relationship
between treatment completion and cognitive function may be mediated by the
treatment approach. For example, compliance rates for cognitively demanding treat-
ments (e.g., cognitive behavior therapy) are more influenced by individual differences
in cognitive ability than nondemanding forms of treatment (e.g., medication trials).

To date, Paulus et al. (2005) have conducted the only study to demonstrate that
neural activation patterns (measured by fMRI) during a decision-making task can
also be used to predict relapse risk. Treatment-seeking methamphetamine depen-
dent patients were administered a two-choice prediction task 3–4 weeks after
starting an abstinence-based treatment program. The patients were followed up at
12 months post-discharge and assessed for drug-taking behavior in the intervening
period. After categorizing participants as “relapsers” or “nonrelapsers,”, the fMRI
data analysis indicated a network of regions that differentiated the two groups,
including significantly lower levels of activity in dorsolateral prefrontal, insula,
parietal, and temporal cortex regions. Activity in the right insula, right posterior
cingulate, and right middle temporal cortex best differentiated relapsers from
nonrelapsers, correctly predicting 17 of 18 relapsers and 19 of 22 nonrelapsers
(94% sensitivity, 86% specificity). The data highlight the potential for neuroimag-
ing studies of executive control to play a role in predicting those patients at risk of
relapsing during the early stages of treatment.

6 Executive Control Dysfunction in “At-Risk” Individuals

The consistent finding of executive control deficits across cross-sectional studies
of drug addicted populations raises questions of whether such deficits directly relate
to the addictive process, or to some extent, represent premorbid vulnerabilities.
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While animal research has robustly demonstrated the neurotoxic effects of chronic
drug abuse on cortical regions critical to executive control, few human studies have
explored whether such neural and behavioral deficits relate to pre-existing vulner-
abilities that may be further exacerbated by chronic drug consumption (Lubman
et al. 2007a). Using a longitudinal approach, Tarter and colleagues (Tarter et al.
2003, 2004; Habeych et al. 2005; McNamee et al. 2008) have examined which
cognitive factors predict the later development of drug dependence in children
(from the age of 10) who have a parent with a diagnosed substance use disorder
(SUD). Their data has demonstrated a strong predictive relationship between
“neurobehavioral disinhibition,”, a composite index of personality and neuropsy-
chological tests that measure executive control, and the development of SUD by the
age of 19. Individual differences in neurobehavioral disinhibition have also been
associated with fMRI activity in prefrontal regions of adolescents at risk of SUD
(McNamee et al. 2008).

Studies of high-risk populations (e.g., a family history of alcoholism) suggest
impairments in frontal functioning are apparent prior to drug use exposure (Monti
et al. 2005; Schweinsburg et al. 2005) and can predict later substance use (Deckel
and Hesselbrock 1996; see also Ivanov et al. 2008 for a review). Schweinsburg et al.
(2005) demonstrated that on a Go/No-go fMRI paradigm, adolescents with a
positive family history of alcoholism demonstrated less inhibitory frontal response
than those with no family history, despite similar task performance between groups.
Deckel and Hesselbrock (1996) examined the ability of neuropsychological and
behavioral tests of anterior brain functioning to predict changes in adolescent
alcohol-related behaviors 3 years after the initial assessment. Tests of executive
functioning, in subjects with a positive family history of alcoholism, were the only
measures to predict later alcohol consumption.

Other populations that are at-risk of developing drug dependence are those
children with diagnoses of oppositional defiant disorder, conduct disorder, and
attention deficit hyperactivity disorder (Myers et al. 1995; Zoccolillo et al. 1997;
Riggs 1998; Whitmore et al. 2000; Finn et al. 2005), as well as young people with
psychiatric disorders such as schizophrenia and bipolar disorder (Dixon 1999; Batel
2000; Crome 2000; Soyka 2000; Chambers et al. 2001; Altamura 2007; Thoma
et al. 2007). These disorders are consistently associated with impairments in exe-
cutive control as well as disruptions to frontal brain circuitry, highlighting the role
that executive deficits play in increasing risk for drug addiction.

Recent advances in developmental neuroscience have highlighted that frontal
brain regions do not fully mature until midway through the third decade of life
(Paus 2005), and appear to be affected by episodes of developmental trauma as well
as exposure to psychoactive drugs (Lubman and Yucel 2008). Indeed, there is
growing evidence that psychoactive substances impact differentially on both
behavior and brain function during adolescence, with the adolescent brain appear-
ing to be more sensitive to the neurotoxic effects of a broad range of psychoactive
substances (Lubman and Yucel 2008). In addition, childhood mistreatment, which
is common among drug users, has also been shown to affect brain development
(Teicher et al. 2003). Thus, vulnerable adolescents (early trauma and/or family
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history of addiction) may develop further deficits in frontal functioning following
early sustained drug exposure, thereby substantially increasing their risk of transi-
tioning from drug use to drug dependence. However, longitudinal studies that
examine the impact of psychoactive drugs on the developing human brain have
yet to be conducted.

7 Future Studies

Together, these findings highlight the need for prospective studies across addicted
populations that systematically examine structural, functional, and cognitive changes
within frontal brain networks, both pre- and post-treatment. Longitudinal research
documenting the development of executive and hedonic functioning during adoles-
cence (prior to the onset of drug use) in high-risk populations is also required, so as
to determine how early drug use impacts upon developmental trajectories. Such
studies would improve our understanding of neurobiological risk for addictive
disorders, development of related neuropsychological and neurobiological impair-
ments, as well as potential prognostic markers for treatment and recovery.

To date, cognitive and neurobiological research in the addiction field has tended
to focus on identifying factors that increase risk for later drug dependence. More
recently, however, there has been growing interest in the role of protective factors
(such as executive skills), which improve resilience. Studies that examine both risk
and protective factors, as well as environmental variables that promote them, have
the potential to foster a greater understanding of brain–behavior relationships as
well as pathways into (or away from) addictive disorders.

There is little evidence regarding how, and to what extent, the brain recovers
following detoxification and protracted abstinence, or the specific role of treatment
in the recovery of affected neurobiological systems. Such data would be particu-
larly salient for rehabilitation settings, and would also provide critical information
regarding prognostic outcomes. For instance, the degree to which identified execu-
tive control impairments recover with abstinence remains unclear. There is some
evidence to suggest that the functional impairments observed in the executive
control network are exacerbated during the early stages of withdrawal. Thus, at
the time when inhibitory control and decision-making abilities are most needed, it
appears that the neural systems underlying them are most impaired (Copersino et al.
2004; Jacobsen et al. 2007). This has clear treatment implications, including the
need for interventions that bolster executive control during periods of increased
risk, as well as the potential for utilizing neuropsychological paradigms to predict
early relapse. Clearly, more research is required in this domain.

Finally, while current diagnostic criteria promote the physiological features of
drug dependence (i.e., tolerance and withdrawal), it is arguably the neuropsycho-
logical component (i.e., impaired control over one’s behavior) that has the most
significant impact on affected individuals and the wider community. Although there
is growing recognition that deficits in executive control are a key feature of
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addictive disorders, we hope that recent advances and future studies in the neuro-
psychological and neuroimaging fields will further inform diagnostic conceptuali-
zations. This would facilitate recognition of the clinical need to incorporate the
management of such deficits within standard care, as well as promote the develop-
ment of interventions (both pharmacological and psychological) that reduce the
impact of attentional biases, enhance executive skills (i.e., improved decision-
making and inhibitory control), and improve hedonic responding to prosocial
relationships and activities.
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